最新提问
我的动态
登录后查看动态
题目内容双击单词支持查询和收藏哦~
Every positive integer can be represented uniquely in base 8 by
$$(a_n......a_2 a_1 a_0)_8$$= $$a_n(8^{n})+......a_2(8^{2})+a_1(8^{1})+a_0(8^{0})$$
for some nonnegative integer $$n$$, where the coefficient $$a_i$$ of $$8^{i}$$ is one of the digits from 0 to 7 for $$0 ≤ i ≤ n$$, but $$a_n ≠ 0$$. For example, $$197=(305)_8$$ because $$197= 3(8^{2})+0(8^{1})+5(8^{0})$$.
$$(a_n......a_2 a_1 a_0)_8$$= $$a_n(8^{n})+......a_2(8^{2})+a_1(8^{1})+a_0(8^{0})$$
for some nonnegative integer $$n$$, where the coefficient $$a_i$$ of $$8^{i}$$ is one of the digits from 0 to 7 for $$0 ≤ i ≤ n$$, but $$a_n ≠ 0$$. For example, $$197=(305)_8$$ because $$197= 3(8^{2})+0(8^{1})+5(8^{0})$$.
Quantity A
The product of the three integers $$(3123)_8, (21740)_8$$, and $$(14)_8$$
Quantity B
The product of the three integers $$(6246)_8, (2174)_8$$, and $$(60)_8$$
C显示答案
· 相关考点
3.6.2 新定义函数
3.6.2 新定义函数
以上解析由 考满分老师提供。