展开全部

题目列表

题目内容
How many points (x, y) lie on the line segment between (22, $$\frac{38}{3}$$) and (7, $$\frac{53}{3}$$) such that x and y are both integers?
Line l passes through points in both quadrants II and III. Which of the following statements are true?

Indicate all such statements.
The coordinates of three points in an x-y rectangular coordinate system are (0,3), (3,3b) and (b,3) respectively (b is a constant). If the area of the triangle is 18 when connecting the three coordinates, then b equals?

Indicate all such possible values.
Line k lies in the xy-plane. The x-intercept of line k is -4, and line k passes through the midpoint of the line segment whose endpoints are (2, 9) and (2, 0). What is the slope of line k ?

Give your answer as a fraction.
A rectangle is drawn in a standard xy-coordinate plane. If the sides of the rectangle are not parallel to the axes, what is the product of the slope of the four sides?
In the xy-plane, a line with equation $$y=mx+b$$, where $$m$$ and $$b$$ are constants and $$mb \neq 0$$, has a $$y$$-intercept that is twice the $$x$$-intercept.

Quantity A

$$m$$

Quantity B

$$-2$$


What is the y-intercept of the graph of the equation y=2·|4x-4|-10?
In the xy-plane, line k is a line that does not pass though the origin. Which of the following statements individually provide(s) sufficient additional information to determine whether the slope of line k is negative?

Indicate all such statements.
f(x)=($$x^{2}$$-x)(x-2)

Quantity A

The sum of all the x-intercepts of f(x)

Quantity B

2


In a circle, the center lies on the Point (-5, 2), while Point (6, 4) lies on the circle. What`s the diameter of the circle?
The distance between point (a, 2) and point (b, 6) is 5.

Quantity A: |a-b|

Quantity B: 3
In a circle, the center lies on the Point (4, 6). If SR is a diameter, Point S (6, 8) and Point R lie on the circle, then what`s the y-coordinate of Point R?


Parallelogram OPQR lies in the xy-plane, as shown in the figure above. The coordinates of point P are (2, 4) and the coordinates of points Q are (8, 6). What are the coordinates of point R?


Quantity A: w+d

Quantity B: c+z
In the xy-plane, triangular region R is bounded by the lines x = 0, y = 0, and 4x + 3y = 60. Which of the following points lie inside region R ?

Indicate all such points
y=2$$x^{2}$$+7x-3

Quantity A

x

Quantity B

y




The figure shows the graph of the equation y=k-$$x^{2}$$, where k is a constant. If the area of triangle ABC is $$\frac{1}{8}$$, what is the value of k?

Give your answer as a decimal.
$$y_1=2x^{2}-2$$, $$y_2=-2x^{2}-2$$,

How many points of intersection do $$y_1$$ and $$y_2$$ have?


If 0< x < y <10, then A (x, y) represents the area of the region bounded by the number line, the semi-circle, and the vertical segments at x and y, as indicated by the shaded region.
0 < a < b < c < 10

Quantity A

A (a, b) + A (b, c)

Quantity B

A (a, c)



In the xy-plane, points (-4, 0) and point (4, 0) lie on a circle C.

Quantity A

The radius of circle C

Quantity B

4


共收录:

25000 +道题目

252本备考书籍

最新提问