展开全部

题目列表

题目内容
P, Q, and T are three distinct points in a plane.

Quantity A

The number of lines in the plane that pass through points P, Q and T

Quantity B

1


Quantity A

The sum of interior angles of a square

Quantity B

The sum of any four interior angles of a pentagon


What is the maximum possible number of interior angles that are right angles of a convex decagon (10-sided polygon)?

Quantity A

The sum of the measures of the interior angles of a square

Quantity B

The sum of the measures of 4 of the interior angles of a regular pentagon


If the perimeter of the isosceles right triangle is (1+$$\sqrt{2}$$), what is the area of the triangular region?
Give your answer as a fraction.

In the figure, what is the area of triangle ADB given that the area of triangle ACE is 4 and the area of triangle CDE is 3?
Give your answer as a fraction.

Quantity A

$$x+y$$

Quantity B

$$\sqrt{(x^2+y^2)}$$


The diagonal of square A and B is 10 and 20, respectively.
What is the ratio of the area of square A to the area of square B?
Give your answer as a fraction.
Set A={2, 4, 6}

Set B={2, 4, 6, 8, 10, 12}

If Set A is a subset of Set M, while Set M is subset of Set B, then how many ways can Set M be constructed?
Of the people surveyed about the effectiveness of various treatments for insomnia, 65 percent reported that prescription drugs were effective and 48 percent reported that exercise was effective. If 22 percent of those surveyed reported that prescription drugs were effective but did not report that exercise was effective,what percent of those surveyed reported that exercise was effective but did not report that prescription drugs were effective?

_____%
18 students can choose from snack, staple food, vegetables or none for lunch. Each student can choose whatever types of food as they want. Among 12 students who choose vegetables, 3 also choose snack but not staple food, 2 also choose staple food but not snack, while 4 also choose snack and staple food. What's the ratio of students who only choose vegetables to all students?
Give your answer as a fraction.
In a group of people, 40% of like red, 50% of them like blue, while 60% of them like green. 9% of them only like red, 10% only like blue and 11% only like green. 20% of them like all the three colors simultaneously. What percent of people like both red and green, but not blue?
$$a_{1}=1$$, $$a_{2}=1$$, $$a_{n}=0.2a_{n-1}(n≥3)$$

Quantity A

$$a_{6}$$

Quantity B

$$25^{3}(0.2)^{10}$$


A list of numbers could be summarized into $$a_{n}=(-1)^{n+1}*n$$ (n is a positive integer), and $$a_{1}=1$$
What is the sum of $$a_{1}$$, $$a_{2}$$, $$a_{3}$$,...........,$$a_{97}$$, $$a_{98}$$, $$a_{99}$$?
$$a_{1}=2$$,$$a_{2}=5$$
If $$a_{n}=a_{n-1} / a_{n-2}$$,then $$a_{135} =$$?
Give your answer as a fraction.
A positive integer is a palindrome if it reads exactly the same from right to left as it does from left to right. For example, 5 and 66 and 373 are all palindromes. How many palindromes are there between 1 and 1,000, inclusive?
N equals the number of positive 3-digit numbers that contain odd digits only (the same number could be used for more than once).

Quantity A

N

Quantity B

125


Quantity A

The number of 3-digit integers all of whose digits are even (the same number could be used for more than once)

Quantity B

The number of 3-digit integers all of whose digits are odd (the same number could be used for more than once)


S={1, 2, 3}
T={1, 2, 3, 4}

Quantity A

The total number of 4-digit positive integers that can be formed using only the digits in set S

Quantity B

The total number of 3-digit positive integers that can be formed using only the digits in set T


A three-digit code for certain locks uses the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 according to the following constraints. The first digit cannot be 0 or 1, the second digit must be 0 or 1, and the second and third digits cannot both be 0 in the same code. How many different codes are possible?

共收录:

25000 +道题目

245本备考书籍

最新提问